
Architecting a Simulation Framework for Model Rehosting

Michael M. Madden*

NASA Langley Research Center, Hampton, VA, 23681

The utility of vehicle math models extends beyond human-in-the-loop simulation. It is
desirable to deploy a given model across a multitude of applications that target design,
analysis, and research. However, the vehicle model alone represents an incomplete
simulation. One must also replicate the environment models (e.g., atmosphere, gravity,
terrain) to achieve identical vehicle behavior across all applications. Environment models
are increasing in complexity and represent a substantial investment to re-engineer for a new
application. A software component that can be rehosted in each application is one solution to
the deployment problem. The component must encapsulate both the vehicle and
environment models. The component must have a well-defined interface that abstracts the
bulk of the logic to operate the models. This paper examines the characteristics of a
rehostable modeling component from the perspective of a human-in-the-loop simulation
framework. The Langley Standard Real-Time Simulation in C++ (LaSRS++) is used as an
example. LaSRS++ was recently redesigned to transform its modeling package into a
rehostable component.

Acronyms
DAVE = Dynamic Aerospace Vehicle model Exchange
EOM = equations of motion
FSSB = Flight Simulation and Software Branch
IDL = intermediate description language
KLOC = one thousand lines of code
LaSRS++ = Langley Standard Real-Time Simulation in C++
XML = Extensible Markup Language

I. Introduction
ROPRIETARY simulation architectures remain the norm in the simulation community.1 Exchange of dynamic
models among different organizations continues to take the form of partial source code, data files,

documentation, and limited check cases. The source code in a delivery may not be reusable. The source code may be
coupled to other source files that were not delivered or the source code may not be portable. The effort to reuse the
source code in the acquirer’s† simulation architecture may be greater than re-engineering the model. Thus, re-
engineering models is common. The Flight Simulation and Software Branch (FSSB) at NASA Langley Research
Center (LaRC) has experienced the following problems with re-engineering and revalidating dynamics models from
another source.

P

• The supplier may not have kept documentation current with their implementation, and documentation
sometimes contains errors. Both problems lead to undue debugging activity required to convince the
acquirer that their implementation matches the documentation even though it does not match delivered
check cases. The debugging activity is also necessary for the acquirer to formulate the correct questions to
ask the supplier in order to resolve the discrepancy, if support from the supplier is available.

• Check cases may have incomplete scenario descriptions or incomplete results. Incomplete check cases
cause additional work if support from the supplier is not available. The developer must reverse engineer the
missing scenario data from the results. When results are incomplete, the developer is left with insufficient

* Aerospace Technologist, Flight Simulation and Software Branch, MS 125B. Senior Member AIAA.
† The organization that provides the dynamics model will be called the “supplier”. The organization receiving the
dynamics model will be the “acquirer”.

American Institute of Aeronautics and Astronautics

1

data to narrow the source of check case discrepancies; the developer must inspect a broad set of source
code, possibly the whole model, for the defect.

• Check cases do not sufficiently cover the model code. The check cases do not exercise all of the code paths
that one could expect to traverse during a normal flight (i.e., all of the nominal cases are not covered).
Check cases rarely cover exceptional scenarios (i.e. scenarios at or beyond the flight envelope enclosed by
aerodynamic and engine tables). The acquirer has no information to independently validate remaining code
paths.

• The delivery usually comprises only the dynamic model of the vehicle. It may not include other models or
algorithms that can affect check case results such as the equations of motion (EOM), trim algorithms,
integration techniques (for derivatives), the atmosphere model, and the world model (gravity, shape, and
rotation). These missing items add a perception of uncertainty to the supplier check case results that can
mask defects in the acquirer implementation when discrepancies in check case results are small.

Even when support from the supplier is available, there can be a significant delay in obtaining an answer that solves
an issue; and the communication expends effort for both organizations.

Organizations now face similar issues internally as the demand to deploy simulation models in design, analysis,
and research applications grow. These applications can represent architectures that differ significantly from the
simulation architecture. The organization is once again faced with the choice of reuse or re-engineering. However,
the organization now has a greater economic incentive to favor reuse. Re-engineering and revalidating a dynamic
model for each deployment represents a duplication of effort within the organization. That duplication extends into
maintenance. Each team performs a duplicate effort to implement model changes and validate them. Re-engineering
also introduces overhead in the form of additional communication. The supplier must provide technical support for
acquirers. The supplier must mentor acquirers on the implementation details of the dynamics model and portions of
the simulation architecture. The supplier must establish processes that ensure changes to the dynamics model are
communicated to all acquirers. Identical behavior also gains greater importance for internal use. Even small
differences in the behavior of the dynamics model between simulation, design, analysis, and research applications
could lead projects in the wrong direction and may not be caught until a failure occurs. When a difference in
behavior is found, the supplier may be asked to generate additional test cases to aid acquirers in debugging.

An organization can choose between two approaches to reuse, an intermediate description language (IDL) or
source-code reuse. The IDL defines the dynamic model using high-level, code-neutral constructs. For example, an
IDL file might describe the model as a hierarchy of parts with each part described using equations, data tables, and
relationships (e.g. source of inputs, order of execution). A code translator generates code from the IDL for the target
application. Customized code generation is the main advantage of IDLs. A well-constructed code translator will
produce code that compiles and links into the target application without any manual code modifications. Moreover,
the code can take full advantage of the target application’s services. The main disadvantage to an IDL is the lack of
mature standards and tools. In addition to the code translators, tools for creating and maintaining the IDL source are
important. For effective reuse using IDLs, developers must make future model changes to the IDL source and
regenerate the code. Because of the lack of standards and tools, the organization must invent the IDL and invest
resources to develop tools, translators, documentation, and training. A long-term commitment to the IDL is required
to see a return on this initial investment and its recurring maintenance costs. Recent developments aim to ease the
adoption of IDLs. Jackson and Hildreth have proposed a standard IDL for dynamic models that is based on
Extensible Markup Language (XML); this IDL is called Digital Aerospace Vehicle model Exchange (DAVE).1
Graphical modeling tools have also matured to the point where they could double as IDLs and reduce start-up costs.
For example, an organization could use Mathworks’ Simulink®‡ as an IDL; however, the organization may still
need to invest resources in creating custom Simulink® blocks and custom Real-Time Workshop® code generators
for their target applications.

Source-code reuse is the other approach an organization can choose. This paper only considers verbatim reuse
(i.e. reuse without modifying the source).2 Though source-code reuse does not require invention of a new language
or creation of new tools, source-code reuse does have its own initial costs. Source code must be designed for reuse.
A new reuse program may require extensive redesign of the existing simulation architecture; it can be more cost
effective to design a new simulation architecture from scratch and abandon the old architecture. However, source-
code reuse programs do not require the same level of investment as IDLs in developing new tools and training. The
challenge for source-code reuse programs is producing a design that accommodates all of the target applications.
The organization may have to compromise. The reusable design may provide the minimum useful interface for all

‡ Visit http://www.mathworks.com for more information. Simulink® and Real-Time Workshop® are registered
trademarks of Mathworks.

American Institute of Aeronautics and Astronautics

2

http://www.mathworks.com/

target applications. However, the reusable code may seamlessly integrate with a subset of the applications.
Developers for the remaining applications will have to build an interface and translation layer to hook the reusable
code into the target application and its services.

This paper examines the source-code reuse approach with an emphasis on rehosting the dynamic model. The
author defines “rehosting” as a specialized form of reuse in which the component is a mostly self-operating whole
that takes direction (i.e. simple commands) from its host. This paper explores design characteristics for a human-in-
the-loop simulation architecture that allow the dynamic model to be re-hosted in other applications. The design must
first target a level of abstraction for reuse. The paper compares three abstraction levels: universe (i.e. vehicle with
environment models), vehicle, and vehicle subsystem (e.g. aerodynamics model). The universe level has the greatest
potential to deliver low-cost integration and identical behavior across multiple applications. Once a level of
abstraction is selected, the simulation architecture must isolate the rehostable model from other packages;
architectural isolation involves data communication and interaction control with the rehostable model. Architectural
isolation accomplishes physical separation of the model. The definitions of inputs and services of the rehostable
model’s interface can still logically tie the model to the supplier’s environment. In a rehostable model, the
definitions must be free from assumptions about the application environment. The paper focuses on definitions
specific to vehicle simulation: the cockpit data definitions and the integration services (for derivatives). To be
useful, the rehostable model must allow acquirers to define new scenarios (i.e. initial conditions). The scenario
definition services influence how suppliers share scenarios for model validation. Rehostable models must also be
portable. However, dynamic models do not have portability issues unique from other types of software and detailed
treatments on portability are plentiful. This paper will not discuss portability.

The paper uses the Langley Standard Real-time Simulation in C++ (LaSRS++) in its examples.3 LaSRS++ is the
simulation framework used by FSSB to build simulation products for LaRC’s high-fidelity research simulators.
Recent design changes enable rehosting of the LaSRS++ Model package§. The paper also uses LaSRS++ as a case
study in updating an existing architecture for model rehosting. As a demonstration of a rehostable architecture from
a production framework, the paper presents a simple main program that performs a pitch stick doublet on the high-
fidelity Boeing 757 model from LaSRS++.

II. Level of Abstraction
Organizations can choose to design for reuse at any level of abstraction within the simulation architecture. This

paper will compare and contrast three levels. These levels are depicted in Figure 1:
1. Universe – This level includes

the entire modeling environment
including the vehicle, world, and
environment models plus any
support computations such as
relative geometry.

Vehicle

Subsystem
Model

Vehicle States (EOM)

Other Subsystems

Universe

Time Step
Simulation Controls
Configuration Settings
Pilot Controls

Atmosphere
Gravity
Terrain
Navigation Database
Relative Geometry

2. Vehicle – This level includes the
code that defines the vehicle and
its subsystems. This level is
assumed to include the EOM and
the trim algorithm.

3. Subsystem Model – This level
includes only the code that
defines vehicle subsystems such
as the engine model. This level
includes all of the vehicle’s
subsystem models.

Figure 1 Input Interface for Different Levels of Abstraction

§ This paper uses the Unified Modeling Language (UML) definition of “package”, “a general purpose mechanism
for organizing elements into groups”. The LaSRS++ Model package is a group of classes logically associated with
dynamic modeling.

American Institute of Aeronautics and Astronautics

3

Table 1 Commands at Each Level of Abstraction in LaSRS++

Universe Vehicle Subsystem Model
Universe() Vehicle constructor Subsystem Model constructor
~Universe() Vehicle destructor Subsystem Model destructor
resetPositionalModel()a doResetCalc() initialize()
doTrim() doTrimCalc() resetInitialConditions()
doHold() doHoldCalc() processInitializationFile()
doOperate() doOperateCalc() calculate()
propagatePositionalModel() propagateSate()
doPrint() copyDataRamFileToPhysicalFile()
generateLinearModel() generateLinearModel()
resetEnvironment()
updateEnvironment()
calcGeometry()
addPositionalModel()
delPositionalModel()

a The top of the vehicle hierarchy in LaSRS++ is PositionalModel. A PositionalModel is any model
that occupies space. The Vehicle class derives from PositionalModel and represents a
PositionalModel that responds to forces and moments.

For a given level of abstraction, a rehostable design must define the minimum interface required to feed and operate
the component. Figure 1 provides a simplified depiction of the flow of inputs in LaSRS++. Other simulation
architectures may not have such a clear division between levels of abstraction. For example, a given simulation
architecture may embed gravity and the word shape model (part of “terrain” inputs) in the vehicle’s EOM.

The arrows in Figure 1 represent data that the host application must input into a given level of abstraction. (The
arrow’s color matches the source abstraction level with yellow representing inputs external to all models.) Universe
is the level of abstraction with the fewest input requirements. Inputs become more numerous at the lower levels. At
the Universe level, the inputs represent operator decisions; the inputs are not outputs from a dynamic model¶. At
lower levels, the host application must re-engineer environment models (atmosphere, gravity, terrain, etc.) and other
algorithms (e.g. EOM, trim, relative geometry) to generate some of the inputs. As a simulation architecture matures,
the re-engineering of models and algorithms can represent a substantial development effort. For example, the
LaSRS++ environment models (atmosphere, gravity, terrain, and navigation database) contain 30 KLOC and
represent ~10% of the simulation framework. If an organization or project demands identical behavior from each
model deployment, acquirers must perform additional testing to certify that re-engineered models and algorithms
perform identically to the supplier’s model or algorithm.

In LaSRS++, the difference in interface size between levels of abstraction is primarily input driven. The number
of commands is small compared to the number of data items. Table 1 lists commands at each abstraction level. The
listed commands constitute the minimal interface for operating a given abstraction level. The list shows the methods
that LaSRS++ calls to operate that abstraction level. Each level has a richer set of commands that are accessible.
However, internal interactions within a level of abstraction invoke the additional commands. Applications could use
the additional commands to exercise fine control over the model. However, the economic goal of rehosting is
replicating model behavior across multiple environments for low cost. A rehostable model assumes that the acquirer
is willing to trade control for simplicity. The rehostable model aims to reduce model operation to a few semi-
autonomous commands. In LaSRS++, the number of commands decreases as one progresses to lower abstraction
levels because the scope of control also decreases. However, each increase in scope does not result in an equal
increase in commands. The Universe level exerts control over environment models, vehicle models, and relative
geometry calculations within a little more than double the number of commands provided by the Subsystem Model
level. Higher levels of abstraction do not trade scope of control for interface complexity. The work to interface the
additional commands at a higher-level of abstraction should require less effort than re-engineering the control logic
and rehosting a lower-level abstraction.

The Universe level of abstraction has the greatest potential to achieve rehosting goals of model replication with
the lowest effort. The Universe level has the smallest input interface. Universe inputs are not outputs from models or
algorithms that acquirers must re-engineer and certify as identical to the supplier’s model or algorithm. Relative to

¶ The time step in LaSRS++ is fixed, and LaSRS++ treats it as a configuration setting.

American Institute of Aeronautics and Astronautics

4

its size, the command interface at the Universe-level exerts greater control on behalf of the acquirer than lower
abstraction levels. The acquirer sees a net savings over re-engineering the control logic and reusing a lower-level
abstraction. The remainder of the paper will focus on rehosting at the Universe level. However, some of the design
characteristics of a rehostable Universe also apply to a rehostable Vehicle and Subsystem Model. The LaSRS++
architecture provides rehosting at both the Universe and Subsystem Model levels. However, LaSRS++ does not
currently support rehosting at the Vehicle level.

III. Architecture Isolation
The level of abstraction establishes the context for the rehostable model’s inputs and commands. The

mechanisms for communicating input data and the external interactions of the model’s commands must also be
designed for rehosting. Communication mechanisms can introduce source code dependencies that prevent a given
level of abstraction from being re-hosted in a new application. Similarly, a model can be implemented with control
autonomy that extends outside of itself. Directing services from external packages or pushing outputs to external
packages will cause the model to depend on the source files of the external packages. A model cannot be removed
from an architecture and rehosted unless it is isolated from the surrounding architecture.

A. Communications
The top yellow arrow in Figure 1 represents interface data that originates outside of a rehostable Universe.

Figure 1 also illustrates that this external data must flow down to lower levels. To make Universe rehostable, the
communication mechanism that delivers the interface data must not bind Universe to the supplier’s architecture.
Such bindings can make Universe inseparable from the remaining supplier architecture, especially if such bindings
are pervasive throughout the architecture. Even when the bindings have limited scope, acquirers must include or re-
engineer parts of the supplier’s architecture to rehost the model. The acquirers will require mentoring from the

supplier to successfully integrate the model.
Moreover, the integration is less resilient to changes
in the supplier architecture.

To illustrate, Figure 2 depicts the high-level
architecture of LaSRS++. LaSRS++ divides, into
packages, services that are typical in many human-
in-the-loop simulation architectures. These services
are the source of the external input data to the Model
package (i.e., the yellow arrow in Figure 1), which
represents the Universe level of abstraction. Real-
Time Services provides the time step. Simulation
Control provides the simulation control data (e.g.
mode) and configuration settings. The Hardware I/O

subsystems (Hardware Interface and Hardware Communication) provide the pilot inputs from the cockpit. The
arrows in Figure 2 depict the direction of dependencies in the LaSRS++ framework. LaSRS++ does not bind Model
to its data sources; the binding occurs in the opposite direction. (Simulation Control has responsibility for
communicating Real-Time Services data to the Model.) Isolating data communication requires a simple non-
binding mechanism where external objects push inputs into the rehostable model and pull outputs from the
rehostable model. Some LaSRS++ communication implements this push-pull mechanism directly using method
calls. LaSRS++ uses two other communication designs that build upon the push-pull mechanism, the mediator
pattern5 and passing handles.

The Hardware I/O subsystems are an example of the mediator pattern. The Hardware Interface acts as a mediator
for the Model and Hardware Communication. The Hardware Interface is responsible for reading inputs from the
Hardware Communication and inserting the data in the Model. Likewise, the Hardware Interface actively reads
outputs from the Model and inserts the data into Hardware Communication. A typical input operation in Hardware
Interface would have the form:

Simulation
Control

User
Interface

Model Hardware
Interface

Hardware
Communication

Real-Time
Services

Hardware I/O

Figure 2 LaSRS++ High Level Architecture

dynamic_model->putInput(hardware_communication->getOutput());
As implemented in LaSRS++, the mediator pattern is a design realization of the push-pull communication
mechanism. Reference 6 provides more information about use of the mediator pattern for LaSRS++ hardware I/O.

LaSRS++ communicates the remaining “external” data to the Model using handles. These handles take the form
of files or object references. LaSRS++ reads configuration settings from a file. All packages use the same file for
configuration settings. Each package is responsible for parsing the package’s configuration settings from the file.

American Institute of Aeronautics and Astronautics

5

SimulationModel
mode : Mode&
timer : Timer &

Vehicle VehicleSystem SubsystemModel

Figure 3 Vehicle-Subsystem Relationships

Thus, Simulation Control
communicates configuration
settings to the Model by pushing
the file. Simulation Control uses
object reference to communicate
the time step and simulation
control data. The time step and
simulation control data are
packaged into self-contained
classes, i.e. classes with no
external dependencies on any
LaSRS++ package. The major
classes used in this

communication are Timer (time step) and Mode (simulation control). Simulation Control creates objects of these
classes and pushes references to these objects into the Model. When Simulation Control updates the objects with
new data, the new data is instantly accessible to the Model through the object reference. The key here is that the
classes, which act as intermediaries for communication, are themselves isolated from the packages and do not reside
in any package library. In LaSRS++, the Timer and Mode classes are compiled with other package neutral classes
(such as integrators) into a “toolbox” library.

LaSRS++ uses the same communications mechanisms to provide architectural isolation to the subsystem models,
enabling the subsystem models to be rehostable components. LaSRS++ uses the mediator pattern to isolate each
subsystem model from its input sources. Each subsystem model has a companion mediator derived from the
VehicleSystem class (see Figure 3). The VehicleSystem object retrieves the subsystems inputs from the appropriate
sources. It then inserts the inputs into the subsystem model and operates the subsystem model. More details on the
use of the mediator pattern for subsystem models are found in Refs. 7 and 8. The mediator pattern does not handle
all the input sources. Time and simulation control data are communicated using object references. In fact, the object
references that the Simulation Control package inserts into the Model package are distributed throughout the models
in the package. Each higher-level abstraction passes these references to next level. LaSRS++ facilitates and enforces
this reference passing by embedding these references as constructor arguments for the base class of all dynamic
models, SimulationModel. When a dynamic model is created, it receives the references from its creator and, within
its constructor, will pass those references onto models that it creates.

B. Control of External Interactions
Communications alone do not provide the architectural isolation required for rehostable models. The rehostable

model must relinquish control of its external interactions. The external target of the interaction must assume control
of the interaction or it must delegate control to an independent (i.e. reusable) proxy. In the latter case, the
intermediary becomes part of the interface to the model when it is rehosted. Data communication as discussed in the
previous section is one form of control. This section will focus on control of activities.

Vehicle destruction in LaSRS++ is an example of reassigning control to the target. The top-level class in the
Model package is Universe. Universe maintains a list of vehicle objects. Removal from Universe’s list is the first
step in deleting a vehicle object. In previous LaSRS++ designs, Universe was given responsibility for deleting the
vehicle object. Deleting a vehicle object in LaSRS++ requires more than deleting the dynamic model. The Hardware
Interface objects associated with the vehicle object must also be destroyed to reclaim memory and hardware
connections (i.e. Hardware Communication objects) for future vehicle objects. Universe had to send a request to
Simulation Control for deletion of the associated Hardware Interface objects. Universe could not be reused without
inclusion or re-engineering of this Simulation Control interface. The recent LaSRS++ redesign corrected this issue
by reassigning control of Vehicle deletion to the Simulation Control package. Simulation Control now requests that
Universe remove the Vehicle from its list. Then, Simulation Control deletes the Vehicle and its associated Hardware
Interface objects. Universe no longer depends on Simulation Control and is reusable without including or re-
engineering the Simulation Control interface.

Simulation mode control in LaSRS++ is an example of delegating control to a proxy. The main simulation
control datum in LaSRS++ is an enumeration of “modes.” The modes in LaSRS++ are RESET, TRIM, HOLD,
OPERATE, PRINT, and LINEAR_MODEL. Some Model classes request mode changes. For example, the
VehicleLimits hierarchy transitions the simulation to HOLD from OPERATE when a vehicle state exceeds a
programmed limit. The limits can be used to define conditions that would exceed the structural limits of the real
aircraft or that exceed safety limits for humans riding in a motion base. Originally, a VehicleLimits object would

American Institute of Aeronautics and Astronautics

6

directly request the mode transition from Simulation Control. The VehicleLimits objects could not be reused without
including or re-engineering the Simulation Control interface. The redesign corrected this by converting the mode
enumeration into an independent class called Mode, which encapsulated the enumeration and all related services. As
explained in the previous section, Simulation Control creates the Mode object and passes it as an object reference to
the Model. The reference is then passed from parent model to child. The VehicleLimits object now requests the
transition using the object reference. Simulation Control later queries the Mode object for a new transition request
and executes the request. Reuse of the VehicleLimits object now requires the Mode class, but this dependency is not
a problem because the Mode class is an independent, reusable class. The Mode class becomes part of the interface to
model when it is rehosted.

IV. Data and Service Definitions
Architecture isolation enables the model to be physically rehosted in a new application. However, the definitions

of the inputs and services can still logically tie the rehostable model to the supplier’s environment and introduce
additional effort or constraints for acquirers. This section examines two topics specific to vehicle models: definition
of cockpit inputs and integration strategy (for derivatives).

A. Definition of Cockpit Inputs
Section III.A discussed the necessity of isolating the rehostable model from the source of its inputs. However,

the definition of cockpit inputs should also be free from the supplier’s environment. If the input definition reflects
the raw hardware data in the supplier’s environment, the input definition defeats the isolation provided by the
communications mechanism. The rehostable model would be required to scale the inputs for the dynamic models
and this scaling algorithm would be specific to one hardware cockpit. Rehosting the model would force acquirers to
re-engineer the interface of the hardware cockpit. The interface may not make physical sense in a new environment.
The acquirer may need to gain a depth of knowledge into the hardware, for which they would not otherwise have a
use. Practical rehosting of the model requires a cockpit interface whose data content conveys general meaning to
acquirers. Representing the data in the units expected by the vehicle model is one choice. The interface is tailored to
the vehicle, and the interface has physical meaning to all acquirers. However, acquirers working with multiple
vehicle models will have to tailor an interface to each model. Normalizing the cockpit inputs is an alternate design
choice that allows acquirers to create a single generic interface to all models. LaSRS++ vehicles use a cockpit
interface in which the cockpit controls are normalized between 0 and 1 (e.g. spoiler handle) or -1 and 1 (e.g.
longitudinal stick) as appropriate. One disadvantage to normalized cockpit interfaces is an increase in computation.
The application must normalize its inputs before feeding them to the rehostable model. The rehostable model must
then scale the normalized values to the units and range expected by the vehicle model. It is a choice of reduced
development cost and maintenance over increased computation. In the case of LaSRS++, the choice was not based
on reuse considerations; LaSRS++ uses normalized cockpits to allow any vehicle model to run in any simulator
operated by FSSB.6 Another disadvantage of normalized cockpits is that the supplier must document the scaling of
asymmetric controls. For example, if the longitudinal stick in a given model has a range of -6 in. to 12 in., the
supplier must document whether:

• The model applies the scale factor of 12 in. to positive and negative stick values but treats all
normalized values less than -0.5 as -6 inches.

• Or, the model applies a factor of 6 in. to negative stick values and a scale factor of 12 in. to positive
stick values.

Choosing a different solution for each model reintroduce some tailoring of the interface; thus, organizations should
choose the same scaling solution for asymmetric controls when possible.

B. Integration Strategy
The strategy that the rehostable model uses to integrate derivatives can impact its reuse in other applications.

Integration strategy encompasses the integration algorithms, timing of integration, and how chains of integrators
behave.# LaSRS++ and Simulink®/Real-Time Workshop® integration strategies are a good contrasting example.

Fixed vs. variable time step is also a consideration. However, this paper will assume that target applications
accommodate fixed time steps. The Model package in LaSRS++ was not designed to assume a fixed time step. Time
step can be retrieved from a Timer object whenever it is used. However, the Simulation Control package assumes a
fixed time step since FSSB runs only simulations using a fixed time step. FSSB has not validated the Model package
using a variable time step. Thus, a vehicle implementation may contain assumptions that the time step is fixed.

American Institute of Aeronautics and Astronautics

7

Each product uses the integration strategy to achieve different goals. LaSRS++ uses an integration strategy that
minimizes transport delay.** Simulink® uses a mathematically consistent strategy that produces uniform results for a
broad array of analysis techniques. In its integration strategy, LaSRS++ uses a variety of integration algorithms.
Integration algorithms in the EOM are selected to obtain the best approximation for a given state while minimizing
transport delay. For example, the LaSRS++ integration algorithm for position is a truncated tailor series that uses
both velocity and acceleration so that pilot actions, which result in acceleration changes, affect position in one
frame. Typical LaSRS++ dynamic models perform integration inline, i.e. at the point in the model where the
integrator appears. The effect of a derivative change (which may trace back to pilot actions) is immediately
communicated downstream and will affect vehicle behavior within one frame. In a chain of integrators, the first
derivative will influence the result of the last integrator in one frame. Simulink® uses the same integration algorithm
for all integrators by default. Simulink® performs all integrations as a distinct stage within a frame. In a chain of
integrators, the result of a predecessor integrator does not flow to the next integrator in the same frame. Thus, a
change in a derivative at the start of a chain of three integrators will take two additional frames to affect the outcome
of the last integrator. The different integration strategies give rise to special considerations and constraints when a
component from either environment is rehosted in the other. To maintain minimum transport delay when a Simulink
component is rehosted in LaSRS++, the LaSRS++ developer must run the component (or the whole vehicle model)
at a integer multiple of the hardware I/O rate; the integer multiple is equal to the length of the longest chain of
integrators in the Simulink model.9 When a typical LaSRS++ component is rehosted in Simulink, the component
does not provide centralized control of its integrators that acquirers could delegate to Simulink. The component will
retain control of integrators and run them during the output computation phase in Simulink. The component can be
used to run a simulation in Simulink®, but it will not produce correct results in analysis tools that require
manipulation of the states (e.g. Simulink’s linear modeler).

The ideal rehostable model would be capable morphing to different integration strategies. LaSRS++ has design
characteristics that enable some morphing of its integration strategy. LaSRS++ integrators are part of a polymorphic
class hierarchy whose base class is Integrator. The Integrator base contains the necessary interface for operating
integrators; all modeling code operates the integrators through the base-class interface. The algorithm that the
modeling code will invoke depends on the type of Integrator object that the model constructs. The model can allow
the integration algorithm to change without changing the modeling code by providing methods that replace the
Integrator object(s). The LaSRS++ EOM does provide this capability. However, subsystem models are not required
to provide this capability, and none of the currently implemented subsystem models do. The models could easily add
this capability at a later date if required. An acquirer could use the LaSRS++ Integrator design to create a new
integrator type that delegates the integration to the application’s integration engine. Using integrator replacement
methods in the LaSRS++ EOM and subsystem models, the acquirer could replace the model’s existing integrators
with the application-specific integrator to delegate all integration control to the application. This mechanism could
allow an application like Simulink® to control the integration of a LaSRS++ model. However, the acquirer would
have to learn the model’s decomposition and the location of all the integrators in the model. The resulting
integration code would be tailored to the specific model. Creation of a generic interface requires a central access
location for all of the model’s integrators. The integrator list in the LaSRS++ EOM could be used for this purpose.
The LaSRS++ EOM provides a method to add integrators to this list. The EOM operates all integrators on the list at
a specific stage in the frame (after LaSRS++ computes vehicle accelerations and world dynamics). Because the
LaSRS++ design guideline for subsystem models is inline integration, the subsystem models do not currently add
their integrators to the list. It is possible to design a LaSRS++ vehicle to centralize access and control of its
integration. Thus, a LaSRS++ vehicle could be designed to use the same integration strategy as Simulink. But, it is
not currently possible to support both an inline and staged strategy in the same vehicle. This too could be changed
with some design tweaking. A switch that can be set to inline or staged operation could be added to the base
Integrator class. Subsystem models would then be required to both add their integrators to the EOM’s integrator list
and call the integrators inline. Whether the inline operation or the staged operation would run the integration
algorithm would depend on the switch setting. LaSRS++ could emulate a vehicle-wide setting for the switch using
the integration list in the EOM. User demand will determine whether future work implements this modification.

V. Defining Scenarios and Model Validation
The paper discusses defining scenarios and model validation together because defining scenarios is the first step

in model validation. Though most scenario definition activity is intended for operational use, design decisions

** The delay between observer action and observation of the action’s results.

American Institute of Aeronautics and Astronautics

8

should consider simplification of model validation. At a minimum, a rehostable model must allow acquirers to
define new scenarios without code changes. The rehostable model cannot contain a finite set of hard-coded scenarios
with the expectation that they will fulfill the needs of all users. The model could provide a programming interface
that allows acquirers to code scenarios. The Model package in LaSRS++ does provide such an interface. Model
classes provide methods for setting initial values, and the trim engine provides methods for selecting rules that
describe the vehicle action in the scenario (e.g., a coordinated turn). Using a programming interface for scenario
flexibility puts a burden on acquirers to write and test scenario code. Acquirers must also learn the internal structure
of the rehostable model. The supplier must communicate this knowledge through training or documentation.
Retraining and code modification will be necessary if the internal structure of the model changes. FSSB has had
such experience rehosting Simulink®/Real-Time Workshop® components in LaSRS++, which uses the
programming interface in the generated code for initialization. The internal structure of Real-Time Workshop®
generated code has changed in the last three versions of the product. Each version has led to a cycle of re-learning,
code modification, and validation. Cutting the additional cost for development and learning is desirable for internal
deployment, and appreciated by external customers.

A programming interface also introduces problems for scenario sharing. Sharing scenarios is common among
development teams on the same project. A supplier team must share scenarios as part of delivering the model; the
supplier must bundle a set of scenarios with the model for validation testing in new applications. Scenario sharing is
necessary between an acquirer and supplier when they collaborate on debugging of suspicious behavior. The
scenario for a programming interface must be communicated as a description or a code fragment. A description
cannot be tested for completeness and is therefore subject to omissions. Both communication forms require
translation (e.g. code modification) into the target application; a translation step can introduce a defect. A better
design for scenario definition is native support in the rehostable model for a script language. Acquirers need only
learn the script language to define new scenarios. The internal structure of the rehostable model can change without
impacting acquirers if the script language remains unchanged. Scenarios would be shared as scripts. The rehostable
model executes the scripts directly; the acquirer performs no translation of the script that can insert a defect. The
supplier can test the script for completeness before distributing it. Thus, the acquirer can be confident that a
discrepancy in check case results is not the result of missing scenario information.

The LaSRS++ Model package provides a script language for defining the available scenarios of a vehicle object.
An example script appears in the Appendix, Section A. The script language assigns a number to each scenario. The
target application can then load a scenario by passing a number to vehicle object; the default case is zero if no case
is passed. The LaSRS++ Model package provides a similar script language to configure the environment model for
the scenario. This script is normally stored in a configuration file that also contains settings for the other LaSRS++
packages. The Model package reads the configuration file and ignores settings for the other packages. Both the
configuration file and the vehicle's scenario file are necessary to define a complete scenario for the Model package.

The Introduction listed incomplete scenario definitions as one problem with supplied check cases. The scripted
scenario definition discussed here solves this issue for static check cases (i.e. trim algorithm results) and dynamic
check cases (i.e. time history results) without perturbations of cockpit controls. However, the scenario script does
not describe cockpit perturbations for dynamic check cases. Section II established cockpit inputs as data external to
a rehostable model. From this perspective, scripted cockpit perturbations are the responsibility of each target
application. An organization can gain the same benefit as scripted scenarios by agreeing on a standard script
language for cockpit perturbations. However, each acquirer must develop the execution engine for the script. A
rehostable model with native support for cockpit perturbation scripting would alleviate the additional development.
The feature would require an on-off switch in order to hand cockpit control to the target application. An alternative
solution is to supply a rehostable model for cockpit perturbations.†† This would be the preferred solution for
LaSRS++. The LaSRS++ architecture strictly assigns responsibility for cockpit inputs to the hardware packages.
Within the Hardware Interface package, LaSRS++ currently provides a DynamicCheckCockpit hierarchy for
scripting cockpit perturbations. This hierarchy is not currently rehostable because it does not exhibit the necessary
architectural isolation that would allow it to be physically separated from the remainder of LaSRS++ (outside of
itself and the Model package). Future work will make the necessary design modifications.

The rehostable model reduces or eliminates the remaining problems with model validation that the Introduction
lists: incomplete results, insufficient code coverage by check cases, and missing environment models and
algorithms. The focus of model validation for a rehostable model is not the model’s code but the acquirer’s interface
code. A re-engineering effort can get lost attempting to track down the source of a discrepancy with incomplete

†† This component may not strictly be rehostable because it can depend on the rehostable model.

American Institute of Aeronautics and Astronautics

9

results. A rehosting effort knows that the likely cause is the interface code‡‡, which should be less code to search
than the model code. A rehostable model allows the supplier to easily eliminate the issue of incomplete results. The
supplier can rehost the model in a simple program that runs the check cases and add the program to the delivery. If
the acquirer finds the check case results to be incomplete, the acquirer can obtain the missing data by running the
check-case program. Ideally, re-engineering efforts require check cases that cover a substantial amount of the model
code to independently validate the re-engineered models. Rehosting efforts only require check-cases that cover all of
the interfaces. If the supplier provides a check-case program, the acquirer can add any missing check cases to the
program in order to obtain an independent result for validation. Finally, the rehostable model includes the supplier’s
environment models and algorithms so this is not a problem for rehostable model. A rehostable model bundled with
a check-case program also eliminates the three check case problems for an acquirer that decides to re-engineer the
model. The check-case program represents a small but complete executable copy of the supplier’s model, which the
acquirer is free to observe and to which the acquirer can add new check cases.

VI. Transforming an Existing Architecture for Rehosting
An organization that decides to peruse rehosting as a solution for model deployment has the choice between

modifying their existing simulation architecture for rehosting or building a new architecture from scratch. LaSRS++
represents an example of how design choices in an existing architecture can enhance or detract from the
transformation of an abstraction level into a rehostable component. Few of the design choices described earlier were
made with the purpose of creating rehostable components. The original purpose of the mediator for Hardware I/O
was to allow a vehicle model to run in any cockpit.6 However, it also provides the added benefit of isolating the
Model package from the hardware design. Designing packages to parse their settings from the configuration file was
done to simplify the work of adding project-specific configuration settings to the file. The welcome side effect was
reducing the interface for configuration settings to passing a single file. The VehicleSystem mediator was originally
designed to allow unit testing of subsystem models and integration of reusable subsystem models from third parties.7
However, its contribution to creating rehostable LaSRS++ subsystem models was recognized at the time of its
design. Inserting time and simulation control data as object references was initially intended to prevent every
dynamic model class from depending on the Simulation Control package and to allow some models to run with
different time steps and simulation control data than their creator. However, this last goal left open the possibility for
some dynamic models to remain bound to the Simulation Control package. In other words, not all simulation control
data and services were packaged into independent classes initially. Reigning in the remaining simulation control
data and services constituted the bulk of recent work to make the Model package in LaSRS++ a rehostable
component.

The LaSRS++ architecture did not start with characteristics that would facilitate rehosting at the Universe level
of abstraction. Each of the above design decisions represents an evolutionary step in the LaSRS++ architecture that
was a large effort individually. Even the recent design tweaking has introduced small changes to 385 LaSRS++
classes. Different design choices could have caused the redesign of the Model Package as a rehostable model to be
cost prohibitive. For example, LaSRS++ could have allowed the Model classes to retrieve timing and simulation
control information directly from the Simulation Control package. Because Simulation Control stores this
information in a class utility§§, it would be easier for a developer to retrieve this data directly rather than code the
passing of object references through multiple layers of abstraction. Always taking the easy coding path eventually
leads to spaghetti code and the blurring of responsibilities. For example, the Hardware I/O code could have been
designed to provide raw inputs. Vehicle developers would be responsible for scaling the inputs for the vehicle. The
developers could choose to scale the inputs where they are used. This would spread the scaling code among multiple
classes. These classes would be responsible for both scaling inputs and modeling part of the vehicle. Each class
would require modification in order to create a rehostable component whose cockpit inputs were normalized.
Although LaSRS++ was not originally architected for model rehosting, some luck and foresight in its evolution
positioned the architecture for rehosting at the Universe level of abstraction.

The current LaSRS++ architecture, however, is not well positioned to transform the Vehicle level of abstraction
into a rehostable component. LaSRS++ vehicles are bound to the Universe level above them. LaSRS++ vehicles
directly access the world models for atmosphere, gravity, terrain, and navigation database information. Relative

‡‡ The occasional compiler bug or previously undetected portability defect are remote possibilities.
§§ A class utility only has static methods and data. For a class to access a class utility, the class simply includes the
class utility header and makes scope-qualified method calls directly. It is similar in ease of use to making external
calls to global functions.

American Institute of Aeronautics and Astronautics

10

.
g
s
a
U
r
b
w
u
w

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 5 10 15 20

Time, s

Pi
tc

h
St

ic
k,

 n
or

m
al

iz
ed

Rehost LaSRS++

-20

-10

0

10

20

30

40

50

60

0 5 10 15 20

Time, s

Th
et

a,
 d

eg
.

Rehost LaSRS++

Figure 4 Comparison of Pitch Stick (a) and Theta (b) Between Rehosting Example and LaSRS++

b)a)
eo
im
ll
ni

eho
ec
ith
nd
ith

reco
arch
med
wou
prev
Veh
the
inhe

exte
mod
arch
cha
poin

exe
metry is centrally computed and stored. Vehicles
ulations) actively retrieve this information from this cen
the necessary information that one vehicle needs to kn
verse level services to obtain references to other vehicl
stable, LaSRS++ vehicles are given full control to o

ause the LaSRS++ architects did not want to make ass
 their surroundings. If reuse at the Vehicle level of abs

ergo its largest restructuring to date. To justify the cos
 sufficient frequency. Otherwise, it is more cost effecti
nstitute the vehicle from the reusable subsystems. If
itecture characteristics and mechanisms used to make
iators, handles, and reallocation of control. The latter w
ld have to accommodate all current Vehicle-Universe
ent pollution of the universe-level with special cases,
icle developers can use inheritance and polymorphism
vehicle is built. This mechanism could be similar to
ritance and polymorphism to control I/O for the specific

As LaSRS++ demonstrates, the ability to transform hi
nt to which initial design decisions and later evolution
el code and other simulation services. Although it may
itecture for rehosting, the supplier team can steer the a

racteristics described here to the designs of future modi
t where a small leap is needed to transform a level of ab

VII. Rehosting the LaSRS++ Mo
Appendix Section B contains C++ code that rehosts t
cutes a pitch stick doublet on a Boeing 757. This code w
• Object file built from the example code - b757_ma
• The libraries for the Boeing 757 library:

o libb757.a – primary B757 aircraft library
o libb757aero.a – B757 aerodynamics funct
o libb757autopilot.a – B757 autopilot functi

• The LaSRS++ Model package libraries
o libdatarecording.a – data recording utilitie
o libenvironment.a – environment models
o liblinearmodel.a – linear model classes
o libmodels.a - vehicle base classes
o libcockpits.a – normalized cockpit interfa
o libsystems.a – vehicle subsystem base cla
o libnavigation.a – navigation database

American Institute of Aero

11
in multi-vehicle simulations (e.g., combat or traffic
tral store. Moreover, relative geometry may not provide
ow about the other. LaSRS++ vehicles are free to use
es. Without a pre-existing requirement to make vehicles
btain services and information from the Universe level
umptions about how future vehicle models may interact
traction became a requirement, LaSRS++ would have to
t, the need for Vehicle level reuse would have to recur
ve to convince acquirers to reuse at the universe level or
 such a restructuring did occur, it would rely on the
 the Universe and Subsystem Model level rehostable:
ill be the most problematic since reallocation of control

interactions and possibly cover foreseen interactions. To
 the interaction control mechanism must be extensible.
to add the special cases to the control mechanism when
 the existing Hardware Interface mediator which uses
 needs of a particular vehicle or hardware device.
gher levels of abstraction for rehosting depends on the
s increased or decreased the coupling between dynamic
 not be cost effective to completely transform a current

rchitecture’s evolution towards that goal by applying the
fications. Eventually, the architecture may evolve to the
straction into a rehostable component.

del Package – a C++ Example
he LaSRS++ Model Package in a simple program that
as linked using the following object files and libraries:
in.o

ions/lookups
ons

s

ce
sses

nautics and Astronautics

o libplayback.a – playback classes
o libtrim.a – trim algorithms

• The LaSRS++ toolbox library – libtoolbox.a
The rehosted program size was 64MB. A LaSRS++ executable containing the same model is nearly four times as
large, 244MB. Figure 4 compares the pitch stick and pitch (theta) values output by the sample program with the
outputs from the full LaSRS++ simulation. As expected, the outputs are identical.

VIII. Conclusions
Model rehosting is verbatim reuse of a semi-autonomous model. Rehosting at the Universe level of abstraction

provides the greatest potential for low-cost model deployment in an organization where identical model behavior
across target applications is the main goal. Other levels of abstraction such as the Vehicle or Subsystem Model will
require re-engineering and re-validation of environment models and algorithms (e.g. EOM and trim). Also, the
Universe level has the smallest input interface and performs more control work per interface command than the
other levels. However, the other abstraction levels may be more desirable in situations where identical model
behavior is a lesser concern and finer control over a vehicle model or its parts is required. Cost will also play a
factor. Depending on the original design and evolution of an existing simulation architecture, certain abstraction
levels may require less effort to redesign for rehosting than others. In a few cases, creating a new architecture may
be the most cost effective means of creating rehostable models.

A rehostable model must exhibit some key design characteristics. The rehostable model must be architecturally
isolated from the supplier application. The communication mechanisms that the model employs must not establish
dependencies external to the model. Mechanisms through which all inputs are pushed into the model and all outputs
are pulled satisfy this criterion. These mechanisms can deploy intermediary objects and interfaces that have no
external dependencies. These intermediaries become part of the interface of the model when it is rehosted. The
rehostable model must relinquish control of its external interactions to the targets of those interactions. In some
cases, this requires reformulating the interaction so that the external object requests a service from the model. In
other cases, independent intermediaries can be used as proxies for services.

The definition of the model’s data and services must refrain from retaining assumptions that logically tie the
model to the supplier’s environment. For a rehostable Universe, providing a normalized cockpit interface divorces
the model from the supplier’s hardware environment while allowing acquirers to build generic interfaces for a
variety of vehicles. The model’s use of integrators should be customizable to accommodate different integration
strategies (e.g. algorithm replacement and inline vs. staged integration).

A rehostable Universe must give acquirers the means to define new scenarios. Native support for a scripting
language fills this need while providing an error-free means of sharing scenarios among different teams. Scenario
sharing is an important component of model validation. Model validation takes on a slightly different meaning in a
rehosting effort of a Universe-level abstraction than in a re-engineering effort. In re-hosting, model validation
focuses on finding defects in the interface code. The acquirer reuses the same model code as the supplier and it
should need no re-validation. Thus, rehosting efforts suffer less from deficiencies in supplier’s check cases. A
rehostable Universe also provides a unique opportunity for the supplier to deliver an executable model in the form of
a check-case program. The check-case program frees the acquirer to observe the complete set of model outputs and
to create additional check cases. A check-case program makes a rehostable Universe a valuable asset to acquirers
whether they choose to rehost or re-engineer.

Appendix

A. Scenario Script Example from LaSRS++
The text below is a selection from the scenarios script that FSSB supplies as a default for the Boeing 757 model.

The script shows the case used in the code example in Section VII.
case: all
 clear recording set list.
 record time: true
 record positional model base: true
 record positional model body: true
 record vehicle body: true
 record aero coefficients: true
 record aircraft air: true

American Institute of Aeronautics and Astronautics

12

 record aircraft air velocity: true
 record landing gear: true
 record propulsion: true
 record cockpit: true
 trim maximum iterations: 4000
break;

case: 2
 runway as primary ref point: KDFW:RW18R
 geodetic coordinates: lat 32.194 deg, lon -98.662 deg, alt 24000
 flap handle position: 0.0
 gear handle: LANDING_GEAR_UP
 weight: 180000.0
 initial cg as percentage mean aerodynamic chord: 0.15
 moments of inertia relative to CG.
 Ixx: 1.219999e+06
 Iyy: 5.306344e+06
 Izz: 6.349998e+06
 Ixz: 1.52999e+05
 initial fuel weight: 30000.0
 euler angles: phi 0.0 deg, theta 0.0 deg, psi 92.0 deg
 straight flight on speed set.
 straight flight on speed vtotal: 280.0
 straight flight on speed type: INDICATED
break;

B. Source Code for Rehosting Example in C++
The code comments explain LaSRS++ interface usage not described elsewhere in this document.

#include "B757Base.hpp"
#include "Cockpit.hpp"
#include "ControlLoader.hpp"
#include "Mode.hpp"
#include "PositionalModelInitialInfo.hpp"
#include "Timer.hpp"
#include "Universe.hpp"

int main()
{
 Mode mode(Mode::RESET); // Mode encapsulates operational state.
 Timer timer(0.020); // A 20 millisecond time step (50 Hz).

 // LaSRS++ supports M vehicles on N processors. A model must be assigned
 // to a processor group. In this code, all models are assigned to
 // processor group 0. Universe methods must be passed the processor group,
 // to which the action applies. Only one processor group is needed for
 // this single thread example.
 const int processor_group = 0;

 // Create the Universe (i.e. the Model package). "siminit" is the name of
 // the configuration file.
 Universe universe(timer, mode, processor_group, "siminit");

 // LaSRS++ packages the construction data for a vehicle into a
 // PositionalModelInitialInfo object. In LaSRS++, the top of the vehicle
 // hierarchy is PositionalModel. The vehicle will obtain the configuration
 // file from universe. The "initialization filename" defined below

American Institute of Aeronautics and Astronautics

13

 // contains the scenario definitions which the file identifies by number.
 PositionalModelInitialInfo constructor_data(&universe);
 constructor_data.putCpuId(processor_group);
 constructor_data.putInitializationFileName("b757_init_file.ic");
 constructor_data.putInitialCaseNumber(2);

 // Construct a Boeing 757 object. LaSRS++ vehicles add themselves to
 // Universe's list of vehicles.
 B757Base b757(constructor_data);

 // RESET Operations (Scenario Definition)

 // Mode transition requires two steps. Requesting the transition and
 // executing the request. In LaSRS++, this design allows any object to
 // request a transition at any time in the frame, but LaSRS++ will only
 // executes requests at the end of the frame.
 mode.putRequestedState(Mode::RESET);
 mode.update();

 // Multiple passes are required for some vehicles to properly initialize
 // all variables.
 for(int i = 0; i < 50; i++)
 {
 universe.resetEnvironment(processor_group);
 universe.resetPositionalModel(processor_group);

 // Mode must be updated at the "end" of each frame because it tracks
 // past values.
 mode.update();
 }

 // TRIM Operations (Solve for Scenario Steady State)
 mode.putRequestedState(Mode::TRIM);
 mode.update();
 universe.doTrim(processor_group);

 // HOLD Operation (Freeze Model)
 // Some models need at least one frame in HOLD before entering OPERATE.
 mode.putRequestedState(Mode::HOLD);
 mode.update();
 universe.doHold(processor_group);

 mode.putRequestedState(Mode::OPERATE);
 mode.update();
 // Timer operations do not change the Timer attributes until run is called.
 universe.getTimer().run();

 for(int i = 0; i < 1000; i++)
 {
 // At five seconds, execute a doublet with pitch stick movement in each
 // direction for five seconds.
 if (i == 250) b757.getCockpit()->getControlLoader()->putPitchStick(0.5);
 if (i == 500) b757.getCockpit()->getControlLoader()->putPitchStick(-0.5);
 if (i == 750) b757.getCockpit()->getControlLoader()->putPitchStick(0.0);

 universe.doOperate(processor_group);
 universe.updateEnvironment(processor_group);

American Institute of Aeronautics and Astronautics

14

 universe.propagatePositionalModel(processor_group);

 universe.getTimer().increment(); // Increments elapsed time.
 mode.update();
 }

 // PRINT Operations (Write Data File)
 // The LaSRS++ Model package includes data recording. The data is
 // written to memory during OPERATE to maintain real-time execution.
 // The memory contents are dumped to file when PRINT mode is executed.
 mode.putRequestedState(Mode::PRINT);
 mode.update();
 universe.doPrint(processor_group);

 // Remove the Boeing 757 vehicle from the Universe list. The B757
 // object will be destroyed when the program exits and implicitly
 // calls the B757 destructor.
 universe.delPositionalModel(&b757);

 return 0;
}

References
1Jackson, E. B. and Hildreth, B. L., “Flight Model Exchange Using XML,” AIAA Modeling and Simulation Technologies

Conference and Exhibit, 5-8 August 2002, Monterey, California, AIAA-2002-4482.
2Madden, M. M., “Examining Reuse in LaSRS++-Based Projects,” AIAA Modeling and Simulation Technologies Conference

and Exhibit, 6-9 August 2001, Montreal, Canada, AIAA-2001-4119.
3R. Leslie, D. Geyer, K. Cunningham, M. Madden, P. Kenney, and P. Glaab, “LaSRS++: An Object-Oriented Framework for

Real-Time Simulation of Aircraft,” AIAA Modeling and Simulation Technologies Conference and Exhibit, August 1998, Boston,
Massachusetts, AIAA-98-4529.

4Object Management Group, “OMG Unified Modeling Language Specification”, Version 1.5, URL: http://www.uml.org/cgi-
bin/doc?formal/03-03-01 [online database], March 2003.

5Gamma, E., Helm, R., Johnson, R., Vlissides, J, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, Reading, Massachusetts. 1995, ISBN 0-201-63361-2, pp 273-282.

6P. Kenney, et. al, “Using Abstraction to Isolate Hardware in an Object-Oriented Simulation,” AIAA Modeling and
Simulation Technologies Conference and Exhibit, August 1998, Boston, Massachusetts, AIAA-98-4533.

7Cunningham, K., “Use of the Mediator Design Pattern in the LaSRS++ Framework,” AIAA Modeling and Simulation
Technologies Conference and Exhibit, August 1999, Portland, Oregon, AIAA-99-4336.

8Madden, M. M., “A Design for Composing and Extending Vehicle Models,” AIAA Modeling and Simulation Technologies
Conference and Exhibit, August 2003, Austin, Texas, AIAA-2003-5458.

9Madden, M. M., “An Object-Oriented Interface for Simulink Models,” AIAA Modeling and Simulation Technologies
Conference and Exhibit, August 2000, Denver, Colorado, AIAA-2000-4391.

American Institute of Aeronautics and Astronautics

15

http://www.uml.org/cgi-bin/doc?formal/03-03-01
http://www.uml.org/cgi-bin/doc?formal/03-03-01

	Acronyms
	Introduction
	Level of Abstraction
	Architecture Isolation
	Communications
	Control of External Interactions

	Data and Service Definitions
	Definition of Cockpit Inputs
	Integration Strategy

	Defining Scenarios and Model Validation
	Transforming an Existing Architecture for Rehosting
	Rehosting the LaSRS++ Model Package – a C++ Example
	Conclusions
	Appendix
	Scenario Script Example from LaSRS++
	Source Code for Rehosting Example in C++

	References

